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a b s t r a c t

We present a simple and efficient fluid–solid coupling method in two and three spatial
dimensions. In particular, we consider the numerical approximation of the Navier–Stokes
equations on irregular domains and propose a novel approach for solving the Hodge pro-
jection step on arbitrary shaped domains. This method is straightforward to implement
and leads to a symmetric positive definite linear system for both the projection step and
for the implicit treatment of the viscosity. We demonstrate the accuracy of our method
in the L1 and L1 norms and present its removing the errors associated with the conven-
tional rasterization-type discretizations. We apply this method to the simulation of a flow
past a cylinder in two spatial dimensions and show that our method can reproduce the
known stable and unstable regimes as well as correct lift and drag forces. We also apply
this method to the simulation of a flow past a sphere in three spatial dimensions at low
and moderate Reynolds number to reproduce the known steady axisymmetric and non-
axisymmetric flow regimes. We further apply this algorithm to the coupling of flows with
moving rigid bodies.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The Navier–Stokes equations are the fundamental equations of fluid dynamics with countless applications, from engi-
neering to biology. More often than not, it is necessary to simulate fluid flows on irregular domains and to compute accu-
rately the velocity field near the solids’ boundary. A typical example is the computation of the lift and drag forces on irregular
geometries, which requires the integration of the velocity field around the objects’ boundary. Another field that requires
accurate computations of the velocity field near objects’ wall is porous media flows: the interaction between the fluid
and the solid is specific to the physical characteristics of the solid, e.g. through the definition of the so-called contact angle.
This condition can be imposed through the so-called Navier-slip condition, which in turn requires the accurate computation
of the fluid velocity adjacent to the solids’ boundary. We note that the notion of contact angles only makes sense in the con-
text of two-phase flows and might involve other issues than the accurate solution of the fluid velocity near the object bound-
ary. Nevertheless, it emphasizes that it is important to develop simple and accurate Navier–Stokes solvers on irregular
domains that guarantee the convergence of the velocity field near the objects’ boundary.

The projection method, introduced by Chorin [6], is a very efficient method to solve the Navier–Stokes equations. Its ease
of implementation on regular domains is based on the fact that the discretization of the Poisson equation can be decoupled
in each of the Cartesian directions, so that imposing the necessary Neumann boundary condition is straightforward. This is
not at all the case for arbitrary geometries. The difficulty in using a projection method on irregular domains is thus primarily
. All rights reserved.
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to impose the Neumann boundary condition when the contour of the solid objects is not necessarily aligned with the
Cartesian grids. Several approaches such as the immersed boundary method of Peskin [21], the immersed interface method
LeVeque and Li [14] and the ALE method of Hirt [10] have been proposed to represent the boundary of an object and simulate
its influence on the fluid dynamics, often with the side-effects of being more computationally expensive or being more chal-
lenging to implement. Finite element methods produce accurate results but the need to conform elements to the objects’
boundary is less attractive than a pure Eulerian approach.

Due to the lack of a simple method that can accurately solve this problem, one often opts for describing the solid bound-
ary by rasterization, i.e. the objects are approximated by forcing their boundary to follow the grid lines. This approach is
obviously straightforward to implement, but it produces solutions that do not converge in the L1 norm and show staircase
effects near the walls; only the average velocity field is convergent. This loss of accuracy can obviously be problematic for the
practical problems mentioned above. In [2], Batty et al. presented a methodology based on energy minimization to account
for the fluid–solid coupling. This method is Eulerian and is able to reproduce the average fluid dynamics and considers
boundary that are not necessarily aligned with the grid lines. However, as we show in Section 4, this method is not conver-
gent in the L1 norm with large Oð1Þ errors near the solid boundary. In this paper, we present a novel discretization that is
straightforward to implement, produces a symmetric positive definite linear system and is second-order accurate in both the
L1 and L1 norms in two spatial dimensions, and first-order accurate in both norms in three spatial dimensions.

2. Standard projection method

The incompressible Navier–Stokes equations for the motion of Newtonian fluids are written as:
qðUt þ ðU � rÞUÞ ¼ �rpþ lDUþ qF;
r � U ¼ 0;
where t is time, q the fluid density, U ¼ hu;v ;wi the velocity field, p the pressure, l the constant viscosity and F describes
external forces such as the gravity field.

The seminal work of Chorin [6] described a method to solve the Navier–Stokes equations based on the Hodge decompo-
sition, which states that any vector field U� can be decomposed into the sum of a divergence-free vector field U and a
weighted gradient field rp

q for some scalar function p and some known positive function q. The projection method consists
of three stages. First, given the velocity field Un at time tn ¼ nDt, an intermediate velocity U� is calculated for a time step Dt
by ignoring the pressure component, e.g.:
U� � Un

Dt
þ Un � rUn ¼ ln

qn
DUn þ F
in the case of a simple Euler step in time. Next, the incompressibility condition r � Unþ1 ¼ 0 for the new fluid velocity is en-
forced by choosing the (scalar function) pressure pnþ1 to satisfy the Poisson equation:
r � rpnþ1

qnþ1

� �
¼ r � U

�

Dt
ð1Þ
with Neumann boundary conditions on the domain’s boundaries and on the solid objects:
n � rp
q

� �
¼ n � ðU�bc � UbcÞ;
where Ubc is the imposed velocity field on the solid’s boundary. Finally, the fluid velocity Unþ1 at the new time step tnþ1 is
defined as a projection of U� onto the divergence-free vector space:
Unþ1 ¼ U� � Dt
rpnþ1

qnþ1 :
3. A novel discretization of the projection method on irregular domains

In the case of an irregular domain, it is not obvious how to choose a scalar function p that will enforce the divergence free
condition. The reason is due to the fact that it is not straightforward to solve the Poisson equation with Neumann boundary
conditions at the boundary of an irregular domain, especially if one seeks to design a simple methodology that can be applied
dimension by dimension. In what follows, we introduce a novel discretization that solves this problem. The method is
straightforward to implement and produces a symmetric linear system that can be inverted efficiently. Without loss of gen-
erality, we present our approach in two spatial dimensions.

Consider a vector field U� on a domain X separated into two disjoint subsets X� and Xþ such that X ¼ X� [Xþ, and C is
the interface between X� and Xþ. We seek to solve the Navier–Stokes equations on the simply connected irregular domain
X� only. Assume that the domain X is represented by a level function / such that X� ¼ f~x : /ð~xÞ 6 0g;Xþ ¼ f~x : /ð~xÞ > 0g
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and C ¼ f~x : /ð~xÞ ¼ 0g. Consider a MAC grid configuration and a cell Cij ¼ i� 1
2 ; iþ 1

2

� �
� j� 1

2 ; jþ 1
2

� �
partially covered by the

irregular domain, as depicted in Fig. 1. Taking a finite volume approach, i.e. integrating the left hand side of Eq. (1) over Cij

and evoking the divergence theorem, we obtain:
Fig. 1.
vertical
the sha
Z
Cij\X�

r � rp
q

� �
dA ¼

Z
Cij\X�

r � U� dl;
where dA and dl refer to the area and length differentials, respectively. Similarly, for the right hand side of Eq. (1), we write:
Z
@ðCij\X�Þ

n � rp
q

� �
dA ¼

Z
@ðCij\X�Þ

n � U� dl:
Since the boundary @ðCij \X�Þ has two components, the faces of the grid cell @Cij \X� and the interface with the irregular
external boundary Cij \ C, we consider separately the contribution of the two components. On a face i� 1

2

� �
� j� 1

2 ; jþ 1
2

� �
, the

length fraction of the face covered by the irregular domain fxj/ðxÞ 6 0g is linearly approximated as:
Li�1
2;j
¼

Dy
/

i�1
2;j�

1
2

/
i�1

2;j�
1
2
�/

i�1
2;jþ

1
2

if /i�1
2;j�

1
2
< 0 and /i�1

2;jþ
1
2
> 0;

Dy
/

i�1
2;jþ

1
2

/
i�1

2;jþ
1
2
�/

i�1
2;j�

1
2

if /i�1
2;j�

1
2
> 0 and /i�1

2;jþ
1
2
< 0;

Dy if /i�1
2;j�

1
2
< 0 and /i�1

2;jþ
1
2
< 0;

0 if /i�1
2;j�

1
2
> 0 and /i�1

2;jþ
1
2
> 0:

8>>>>>>>><
>>>>>>>>:
By approximating the boundary integral on the grid faces as the product of the length and the sampled value at the center,
we obtain:
�
Z
@ðCij\X�Þ

n � rp
q

� �
’

Li�1
2;j

qi�1
2;j
�
pij � pi�1;j

Dx
þ

Liþ1
2;j

qiþ1
2;j
�
pij � piþ1;j

Dx
þ

Li;j�1
2

qi;j�1
2

�
pij � pi;j�1

Dy
þ

Li;jþ1
2

qi;jþ1
2

�
pij � pi;jþ1

Dy
�
Z

Cij\C
n � ðU�bc � UbcÞ;
where
R

Cij\C
is the integral over the interface with the irregular external boundary, approximated using the geometric inte-

gration of Min and Gibou [17]. Similarly, we obtain an approximation of boundary integral of r � U� as:
�
Z
@ðCij\X�Þ

n � ðU�Þ ’ Li�1
2;j
� u�i�1

2;j
� Liþ1

2;j
� u�iþ1

2;j
þ Li;j�1

2
� v�i;j�1

2
� Li;jþ1

2
� v�i;jþ1

2
�
Z

Cij\C
n � U�bc:
Finally, combining the discretizations above, we obtain the following Poisson problem with Neumann boundary condition
as the definition of the scalar function p used for projecting the intermediate velocity U� onto the divergence-free vector field
on irregular domains:
Li�1
2;j

qi�1
2;j
�
pij � pi�1;j

Dx
þ

Liþ1
2;j

qiþ1
2;j
�
pij � piþ1;j

Dx
þ

Li;j�1
2

qi;j�1
2

�
pij � pi;j�1

Dy
þ

Li;jþ1
2

qi;jþ1
2

�
pij � pi;jþ1

Dy

¼ Li�1
2;j
� u�i�1

2;j
� Liþ1

2;j
� u�iþ1

2;j
þ Li;j�1

2
� v�i;j�1

2
� Li;jþ1

2
� v�i;jþ1

2
�
Z

Cij\C
n � Ubc: ð2Þ
Standard MAC grid configuration: the pressure is sampled at the cells’ centers (circles), the x-component of the velocity field is sampled on the
faces (rectangles), and the y-component of the velocity field is sampled on the horizontal faces (triangles). The irregular domain is represented by

ded area.
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The above discretization forms a symmetric positive definite linear system for p (see Section 3.1) and obviously reduces to
the standard linear system for regular domains. We also note that the linear system involves p at grid cells that are located
outside and adjacent to the irregular domain, so the pressure at this location is solved for.

3.1. Symmetry positive definiteness of the linear system

The proof that the linear system is symmetric definite positive is trivial and a direct consequence of the fact that the
length fractions Li�1

2;j�
1
2

and densities qi�1
2;j�

1
2

are located midway between grid nodes (at the flux locations as illustrated in
Fig. 2) and the fact that their values are positive:

� For each grid node ði; jÞ, Eq. (2) is used to fill one row r ¼ ðj� 1ÞNx þ i of the linear system, where Nx the number of nodes
in the x-direction. The diagonal element Ar;r of the linear system is given by
Fig. 2.
Li�1

2;j�
1
2
.

Ar;r ¼
Li�1

2
; j

Dxqi�1
2
; j
þ

Liþ1
2
; j

Dxqiþ1
2
; j
þ

Li;j�1
2

Dyqi;j�1
2

þ
Li;jþ1

2

Dyqi;jþ1
2

;

and the sum
P

of the extra-diagonal elements is given by
X
¼ �

Li�1
2
; j

Dxqi�1
2
; j
�

Liþ1
2
; j

Dxqiþ1
2
; j
�

Li;j�1
2

Dyqi;j�1
2

�
Li;jþ1

2

Dyqi;jþ1
2

:

Clearly the matrix is diagonally dominant, since Ar;r þ
P
¼ 0.

� The diagonal element Ar;r is positive since the L’s refer to (positive) length fractions, the q’s refer to the (positive) fluid
density and Dx and Dy are the (positive) grid spacing in the x- and y-directions, respectively.

� For a given row r ¼ ðj� 1ÞNx þ i, the first extra-diagonal element to the right, Ar;rþ1, is the coefficient in front of piþ1;j, i.e.
L

iþ1
2;j

Dxq
iþ1

2;j
. Its corresponding symmetric element, Arþ1;r is the coefficient of the first extra-diagonal element to the left of Arþ1;rþ1,

i.e.
L

i�1
2;j

Dxq
i�1

2;j
with i ¼ iþ 1, thus

L
iþ1

2;j

Dxq
iþ1

2;j
. Likewise, the second extra-diagonal element to the right, Ar;rþNx , is the coefficient in

front of pi;jþ1, i.e.
L

i;jþ1
2

Dxq
i;jþ1

2

. Its corresponding symmetric element, ArþNx ;r is the coefficient of the second extra-diagonal element

to the left of ArþNx ;rþNx , i.e.
L

i;j�1
2

Dxq
i;j�1

2

with j ¼ jþ 1, thus
L

i;jþ1
2

Dxq
i;jþ1

2

. Therefore the linear system is symmetric.

The linear system is symmetric, diagonally dominant with positive diagonal elements. Therefore the linear system is sym-
metric definite positive.

3.2. Convergence of the new discretization

Consider an irregular domain X� ¼ fðx; yÞj sinðxÞ sinðyÞP :2 and 0 6 x; y 6 pg and a vector field ðu�;v�Þ to be the sum of a
divergent-free vector field and a gradient field:
Cells involved in the construction of the linear system for node ði; jÞ. The densities qi�1
2;j�

1
2

are located at the same location as the length fractions



Fig. 3. Error of the Hodge decomposition in the case of [2] (left) and the present work (right) for the grid resolutions 32, 64, 128, and 256. Note that the
scales for the figures on the right are an order of 10 smaller than those on the left. In the case of [2], the maximum error is mostly concentrated near the
domain’s boundary. In addition, the maximum error will not decrease as the grid is refined, as demonstrated in Table 2. In the present work, the maximum
error is not necessarily near the domain’s boundary. In addition, the maximum error decreases with second-order accuracy as the grid is refined, as shown
in Table 1.
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Table 1
Converg

Grid

162

322

642

1282

2562
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u� ¼ sinðxÞ cosðyÞ þ ðx2 � xÞðy3=3� y2=2Þ;
v� ¼ � cosðxÞ sinðyÞ þ ðy2 � yÞðx3=3� x2=2Þ:
We apply our projection method on ðu�;v�Þ and compare the solution with the exact solution of the divergent-free vector
field inside the irregular domain. In this example we take Ubc � n ¼ 0 on C. Table 1 demonstrates the second-order accuracy
of our Hodge decomposition method in the L1 and L1 norms.
3.3. Stability analysis

The Hodge decomposition states that a smooth vector field U� in a domain X� can be decomposed as the sum of a diver-
gence-free vector field U and a gradient field rp, i.e. U� ¼ Uþrp, with r � U ¼ 0. On the boundary @X, we assume a Neu-
mann condition for the pressure, rp � n ¼ 0, and the impenetrability condition for the velocity field, U � n ¼ 0. Therefore,
denoting h�; �i2 as the L2-inner product operator on X�, we have
hU;rpi2 ¼ �hp;r � Ui2 þ hp;U � ni2 ¼ 0;
which demonstrates the orthogonality between U and rp. From this, the analytical L2-stability condition follows since:
kU�k2
2 ¼ kUþrpk2

2 ¼ hU;Ui2 þ 2hU;rpi2 þ hrp;rpi2 ¼ kUk
2
2 þ krpk2

2 () kUk
2
2 6 kU

�k2
2:
Likewise, a discrete analog of the L2-stability condition can be formulated along the same lines. Let p denote the vector
consisting of the scalar pij sampled at the grid centers, and U denote the vector combining the horizontal ðuiþ1

2;j
Þ and the

vertical ðv i;jþ1
2
Þ velocity components sampled at the respective grid faces. Let G and D be the standard central difference

discretizations of the gradient and divergence operators on the MAC grid, respectively. These discretizations define matrices
mapping vectors at grid centers to vectors at grid faces, and vice versa. Let L be the scalar multiplication by liþ1

2;j
=Dy and

li;jþ1
2
=Dx at the grid faces. Obviously the operations G;D, and L are linear and the associated matrices satisfy the relations

D ¼ �GT and L ¼ LT .
Now, given a vector field U� at grid faces, our projection produces the following linear system:
DLGp ¼ DLU�:
Once the solution vector p is obtained from this linear system, U is calculated as U ¼ U� � Gp. The matrix L is diagonal and
positive in X�, and one can define the weighted inner product hU;ViL ¼ hLU;Vi2 under which we can demonstrate the
orthogonality between the vectors Gp and U:
hGp;UiL ¼ hGp;U� � GpiL ¼ hGp;U�iL � hGp;GpiL ¼ hp;G
T U�iL � hGp;GpiL ¼ �hp;DU�iL � hGp;GpiL

¼ �hp;DGpiL � hGp;GpiL ¼ hGp;GpiL � hGp;GpiL ¼ 0:
From the orthogonality condition, we have kU�k2
L ¼ kUk

2
L þ krpk2

L , where k � kL denotes the vector 2-norm under the weight L.
The stability condition follows trivially as in the analytical case, kUkL 6 kU

�kL. Thus, we conclude that the projection method
is numerically stable.

Fig. 4 depicts the evolution of the log of the L1 and L1 norms of the error in the projected vector field u after repeated
projections and illustrates the stability of the method. Here we use the same test problem as in Section 3.2.
3.4. Accuracy analysis

The linear system DLGp ¼ DLU� approximates the Poisson equation r � rp ¼ r � U�. The operation G approximates the
gradient with the second-order accuracy, since it is implemented as the central finite differences. The operation DL approx-
imates the divergence operator. Away from the interface, the fraction L is uniformly equal to one, thus DL is nothing but the
standard divergence operation D that is second-order accurate. On a grid cell intersecting the boundary @X, DL is discretized
using an integral. On a face Ii�1

2;j
¼ xi�1

2
� ðyj�1

2
; yjþ1

2
Þ, the integral is approximated by the quadrature rule
ence of the horizontal velocity in the case of the present Hodge decomposition on irregular domain.

L1 norm Order L1 norm Order

4.29E�3 1.06E�3

1.37E�3 1.65 2.67E�4 1.98

3.22E�4 2.09 6.42E�5 2.06

7.87E�5 2.03 1.58E�5 2.02

1.95E�5 2.01 3.92E�6 2.01
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Fig. 4. Evolution of L1 (left) and L1 (right) norms after applying repeatedly the projection described in Section 3, illustrating the stability of our method. The
x-axis represents the number of applied projection and the y-axis represents the log of the u-velocity.
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Z
I
i�1

2;j

px ’ li�1
2;j
�
pij � pi�1;j

Dx
:

The quadrature rule is simple and plays an important role in obtaining the symmetric positive definite system, but it is only
first-order accurate since in general, the sampling point ðxi�1

2
; yjÞ of the integrand is not located at the middle point of the

domain Ii�1
2;j

. Therefore, the approximation DLGp ¼ DLU� is first-order accurate at grid cells intersecting the boundary and
second-order accurate away from the boundary.

Let U� denote the sampling at the grid faces of the analytical vector field U�, and p denote the sampling of the analytical
solution pexct at grid centers. Since we use a Neumann boundary condition for the pressure, here we impose uniqueness of the
solution by taking the solution with zero average. Let c be the consistency error of the approximation, i.e.
DLGpexct ¼ DLU� þ c, and e be the convergence error, i.e. pexct ¼ pþ e. Subtracting DLGp ¼ DLU� from DLGpexct ¼ DLU� þ c re-
sults in
DLGe ¼ c;

e ¼ �ð�DLGÞ�1c:
As shown in Section 3.1, the matrix �DLG is symmetric positive definite, having positive diagonal elements and non-po-
sitive off-diagonal elements, and is thus an M-matrix. The convergence error is thus minus the multiplication of the inverse
of the M-matrix with the consistency error. The consistency error is second-order accurate away from the boundary, and is
first-order accurate near the boundary. Although the consistency error is first-order accurate near the boundary, the conver-
gence error is uniformly second-order accurate, and this is referred as supra-convergence. This configuration has occurred in
many elliptic problems such as in Shortley–Weller [24], Johansen and Colella [12], and Min and Gibou [19], in all of which
the convergence error is second-order accurate in the maximum norm. The supra-convergence seems to be based on the
property of an M-matrix: the inverse of an M-matrix is a non-negative matrix, and its multiplication behaves like an aver-
aging process. The boundary is geometrically one dimension less than the domain so that the number of grid cells near the
interface is one-order less than the number of grid cells away from the interface.

Let h be the grid spacing. The consistency error c is OðhÞ near the boundary, and Oðh2Þ away from the interface, and the
number of grid cells near the interface is Oðh�1Þ whereas the number of grid cells away from the interface is Oðh�2Þ. The
matrix ð�DLGÞ�1 is non-negative, and is a numerical analog of D�1. Since D�1 is an integral operator, we assume that each
element of the matrix ð�DLGÞ�1 is Oðh2Þ. Now, for each grid point ði; jÞ we have
eij ¼
X

k

ð�DLGÞ�1
ik ckj ¼

X
node k:

away from boundary

ð�DLGÞ�1
ik ckj þ

X
node k:

near boundary

ð�DLGÞ�1
ik ckj

¼ Oðh�2Þ � Oðh2Þ � Oðh2Þ þ Oðh�1Þ � Oðh2Þ � Oðh1Þ ¼ Oðh2Þ:
Thus we showed that the convergence error is second-order accurate in the maximum norm, but we emphasize that our der-
ivation is rigorous under the assumption that the matrix elements ð�DLGÞ�1 are Oðh2Þ. This assumption was verified using an
eigenvalue analysis in the case of the Shortley–Weller’s method. In the case of our discretization, the matrix is more complex
and the eigenvalue analysis is currently beyond the scope of this paper.

We have therefore demonstrated that the scalar variable p is second-order accurate. Since the differentiation divides the
scalar by a grid size, its gradient Gp should be first-order accurate, and the projection U ¼ U� � Gp should also be first-order
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accurate. This is exactly observed in our three spatial dimensions examples. However we observed instead second-order
accurate solutions in two spatial dimensions with the non-penetration condition U � n ¼ 0. This boost in accuracy in two spa-
tial dimensions only was also reported and analyzed in the case of the Shortley–Weller’s method, but in our case, the matrix
is more complex and the analysis is also currently beyond the scope of this paper.
4. A link with the minimization approach of Batty et al.

The work of Batty et al. [2] is based on minimizing the total kinetic energy of the system, i.e.
Table 2
Converg

Grid

162

322

642

1282

2562
KE ¼
Z

X

1
2
qju2j þ 1

2
V�MsV;
where V is the velocity vector of a solid object and Ms is the mass linear operator matrix containing the inertia tensor and
mass of the solid. In one spatial dimension, Batty et al. [2] showed that this approach leads to the following linear system:
miþ1
2

pi;j�piþ1;j
Dx þmi�1

2

pi;j�pi�1;j
Dx

Dx
¼

miþ1
2
uiþ1=2 þmi�1

2
ui�1=2

Dx
;

where miþ1
2

refers to the mass fraction of fluid in the cell Ci;j and can be computed as miþ1
2
¼
R

Ci;j\X
qdV . A few choices on how

to compute this integral are given in [2]. This approach can therefore be interpreted as the standard central differencing
approximation of
�r � ðmrpÞ ¼ �r � ðmu�Þ;
where the negative sign has been introduced to make the system positive definite. In contrast, our approach is an approx-
imation of
�r � ðLrpÞ ¼ �r � ðLu�Þ;
where L is the length fractions of the cell’s faces occupied by the fluid instead of the mass as in the case of Batty et al. [2] (see
Fig. 1).

Considering the same example as in Section 3.2, we find that the scheme in [2] is only first-order accurate in the average
L1 norm and is not convergent in the L1 norm, as illustrated in Table 2. In order to compute the masses miþ1

2
, we used the

robust second-order accurate method of Min and Gibou [17] to compute the integrals. Fig. 3 also demonstrates that the error
is maximum near the solid object. Since this error does not converge, this method is ill-advised for computations where the
velocity field near objects is important.
5. Solving Navier–Stokes equations on irregular domains

In what follows, we describe how to use the novel discretization of Section 3 for the numerical approximation of the
Navier–Stokes equations on irregular domains. We choose a semi-Lagrangian scheme for approximating the momentum
and a Backward Difference Formula scheme for evolving the equations in time, as described in [16]:
3
2

U� � 2Un
d þ

1
2

Un�1
d ¼ Dtlr2U� þ DtFnþ1 in X�; ð3Þ

U�bc ¼ Unþ1
bc þ Dtrpn on C; ð4Þ
where the variables have been rescaled by q. The intermediate velocity field U� is then projected onto the divergence free
field:
Unþ1 ¼ U� þ Dtrpnþ1;
where the scalar function pnþ1 is found with the discretization presented in Section 3. The semi-Lagrangian Backward
Difference Formula (SL-BDF) method guarantees unconditional stability, but we emphasize that the projection method of
ence of the horizontal velocity in the case of the minimization approach of [2].

L1 norm Order L1 norm Order

3.87E�2 3.20E�3

3.40E�2 0.13 1.45E�3 0.79

3.96E�2 �0.15 5.75E�4 0.92

4.91E�2 �0.22 2.70E�4 0.76

8.16E�2 �0.51 1.78E�4 0.42
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Section 3 can be straightforwardly combined with other methods for discretizing the momentum or evolving the equations
in time. In the next few sections, we describe the required steps in details.

5.1. SL-BDF method

Since we are considering incompressible flows, for which shock and rarefaction waves do not occur, we can use an im-
plicit scheme based on the method of characteristics to update the velocity field in time. The method of characteristics state
that Unþ1ðxnþ1Þ ¼ UnðxdÞ, where xnþ1 is any grid node and xd is the corresponding departure point from which the character-
istic curve originates. We use the second order mid-point method for locating the departure point, as in Xiu and Karniadakis
[25]:
x̂ ¼ xnþ1 � Dt
2
� Unðxnþ1Þ;

xd ¼ xnþ1 � Dt � Unþ1
2ðx̂Þ;
where we define the velocity at the mid-time step tnþ1
2 by a linear combination of the velocities at the two previous time

steps, i.e. Unþ1
2 ¼ 3

2 Un � 1
2 Un�1. Since x̂ and xd are not on grid nodes in general, Unþ1

2ðx̂Þ and /nðxdÞ are found by interpolation.
As noted in Min and Gibou [18], it is enough to define Unþ1

2ðx̂Þ with a multilinear interpolation, e.g.:
uðx; yÞ ¼ uð0; 0Þð1� xÞð1� yÞ þ uð0;1Þð1� xÞðyÞ þ uð1;0ÞðxÞð1� yÞ þ uð1;1ÞðxÞðyÞ;
where the interpolation is written for a scaled cell C ¼ ½0;1�2. On the other hand, UnðxdÞ is approximated with the non-oscil-
latory quadratic interpolation described in the next section.

5.2. Stabilized quadratic interpolation

Lagrange-type interpolation procedures are sensitive to nearby discontinuities in the solution or its derivatives, as noted
in [18]. In order to produce stable results, we therefore favor quadratic interpolations with a correction term using an
approximation to the second-order derivatives. For a cell ½0;1�2 and a function u, we have:
uðx; yÞ ¼ uð0; 0Þð1� xÞð1� yÞ þ uð0;1Þð1� xÞðyÞ þ uð1;0ÞðxÞð1� yÞ þ uð1;1ÞðxÞðyÞ � uxx
xð1� xÞ

2
� uyy

yð1� yÞ
2

;

where we define
uxx ¼ min
v2nodesðCÞ

ðjD0
xxuv jÞ;

uyy ¼ min
v2nodesðCÞ

ðjD0
yyuv jÞ;

D0
xxuv ¼

uiþ1;j þ ui�1;j � 2ui;j

Dx2 for node v at index ði; jÞ;

D0
yyuv ¼

ui;jþ1 þ ui;j�1 � 2ui;j

Dy2 for node v at index ði; jÞ:
Choosing the minimum between the second-order derivatives enhances the numerical stability of the interpolation, espe-
cially in region where u presents kinks.

5.3. Implicit viscosity

We treat the viscous term of Eq. (3) implicitly. The discretization of the viscous term is similar to that of a Poisson equa-
tion given by
br2U� ¼ f in X�;
where b ¼ Dtl is a positive constant. We impose a Dirichlet boundary condition of Ubc ¼ 0 at the solid boundary C, and U�bc is
calculated from Eq. (4). We use the approach introduced by Gibou et al. [9] to obtain a symmetric implicit discretization. For
the sake of clarity, we summarize the approach here and refer the interested reader to [9] for more details.

5.3.1. Discretization of the poisson equation on irregular domains
In this section, we recall the discretization of the Poisson equation on irregular domains, as described in Gibou et al. [9].

The discretization of the Poisson equation, including the special treatments needed at the interface, is performed in a dimen-
sion by dimension fashion. Therefore, without loss of generality, we only describe the discretization in one spatial dimension
for the buxx term. In multiple spatial dimensions, the buyy and buzz terms are each independently discretized in the same
manner as buxx.



8816 Y.T. Ng et al. / Journal of Computational Physics 228 (2009) 8807–8829
Consider the Poisson equation in one spatial dimension
Fig. 5.
Then w

Table 3
Converg

Grid

162

322

642

1282

2562
uxx ¼ f ; ð5Þ
where the variables have been rescaled by the constant b, with a Dirichlet boundary condition of u ¼ uI on the interface
where / ¼ 0. The computational domain is discretized into cells of size Dx with the grid nodes xi located at the cell centers.
The cell edges are referred to as fluxes so that the two fluxes bounding the grid node xi are located at xi�1

2
. The solution of the

Poisson equation is computed at the grid nodes and is written as ui ¼ uðxiÞ. We consider the standard second-order discret-
ization for Eq. (5), given by
uiþ1�ui
Dx

� �
� ui�ui�1

Dx

� �
Dx

¼ fi; ð6Þ
where ux is discretized at the flux locations.
i+1

Ti

TI

θΔx

TG

− ΩΩ +

Interface Position

xi xI xi+1

NIAMODBUSNIAMODBUS

Solution Profile

Definition of the ghost cells with linear extrapolation. First, we construct a linear interpolant ~uðxÞ ¼ axþ b of u such that ~uð0Þ ¼ ui and ~uðhDxÞ ¼ uI .
e define uG

iþ1 ¼ ~uðDxÞ.

Fig. 6. Streamlines of the flow, for example, Section 6.1

ence of the horizontal velocity in the case of the Navier–Stokes example on irregular domain, for example, Section 6.1.

L1 norm Order L1 norm Order

2.44E�3 6.74E�4

1.00E�3 1.29 2.22E�4 1.60

4.51E�4 1.15 7.33E�5 1.60

1.29E�4 1.81 1.91E�5 1.94

3.31E�5 1.95 4.95E�6 1.95
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In order to avoid differentiating the fluxes across the interface where the solution presents a kink, a ghost value is used:
referring to Fig. 5, let xI be an interface point between grid points xi and xiþ1 with a Dirichlet boundary condition of u ¼ uI

applied at xI . We define a ghost value uG
iþ1 at xiþ1 across the interface, and rewrite Eq. (6) as
Fig. 7.
Contou

Fig. 8.
dimens
uG
iþ1
�ui

Dx

� 	
� ui�ui�1

Dx

� �
Dx

¼ fi: ð7Þ
The ghost value uG
iþ1 is defined by first constructing an interpolant ~uðxÞ of uðxÞ on the left of the interface, such that ~uð0Þ ¼ ui,

and then defining uG
iþ1 ¼ ~uðDxÞ. Fig. 5 illustrates the definition of the ghost cells in the case of the linear extrapolation. In this

work, we employ the linear extrapolation in order to obtain a symmetric discretization that remains second-order accurate,
as elaborated on in [9]. The linear extrapolation is defined by ~uðxÞ ¼ axþ b with ~uð0Þ ¼ ui and ~uðhDxÞ ¼ uI , where h 2 ½0;1�
refers to the cell fraction occupied by the subdomain X�. Substituting for uG

iþ1 in Eq. (8) gives a symmetric discretization of

uI�ui
hDx

� �
� ui�ui�1

Dx

� �
Dx

¼ fi: ð8Þ
Stationary state: contours of the stream function and of the vorticity for Re ¼ 40, for example, Section 6.2. The box in the figure is [7,20] � [6,10].
r levels for the stream function are ½�5 : 0:05 : 5� and ½�0:05 : 0:005 : 0:05�. Contour levels for the vorticity are ½�1 : 0:4 : 1�.

Transition state: contours of the stream function and of the vorticity for Re ¼ 50, for example, Section 6.2 at t ¼ 100. Contour levels and the
ions of the box are the same as those in Fig. 7. The flow does not become stationary, and shows vertical asymmetry.
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5.3.2. Location of the interface
Referring to Fig. 5, we compute the location of the interface between xi and xiþ1 by finding the zero crossing of the

quadratic interpolant / ¼ /ðxiÞ þ /xðxiÞxþ 1
2 /xxðxiÞx2. We note that the quadratic interpolant in / is convex with a positive

second-order derivative. The location of the interface along the x-direction is calculated as:
Fig. 9.
figure i

Fig. 10
levels a
hDx ¼
�/xðxiÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/2

x ðxiÞ�2/xxðxiÞ/ðxiÞ
p

/xxðxiÞ
if /xxðxiÞ > �;

� /ðxiÞ
/xðxiÞ

if j/xxðxiÞj 6 �;

8<
: ð9Þ
where � is a small positive number to avoid division by zero. /xðxiÞ and /xxðxiÞ are approximated at xi using second-order
accurate central difference schemes.
5.4. Extrapolation procedures on irregular domains

The procedure to update the intermediate velocity requires interpolation procedures that may need valid values for Un

outside X�. Likewise, the procedure to update the intermediate velocity only defines U� in the irregular domain X� but needs
to be extrapolated in a band outside X� in order to apply the projection step described in Section 3. In [1], Aslam introduced a
high-order accurate extrapolation method on irregular domain to the whole domain, and [18] improved the efficiency of the
method by lowering the unnecessarily high order of finite differences to enhance numerical stability. In what follows, we
present a method heavily based on Aslam [1] and the variants of [18], to include the boundary condition Ubc at the interface.
Unsteady vortex shedding state: contours of the stream function and of the vorticity for Re ¼ 100, for example, Section 6.2 at t ¼ 100. The box in the
s [7,32] � [5,11]. Contour levels for the stream function are ½�5 : 0:1 : 5� and ½�0:05 : 0:015 : 0:05�. Contour levels for the vorticity are ½�4 : 0:2 : 4�.

. Unsteady vortex shedding state: contours of the stream function and of the vorticity for Re ¼ 200, for example, Section 6.2 at t ¼ 100. Contour
nd the dimensions of the box are the same as those in Fig. 9.
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Consider a quantity QðxÞ given inside an irregular domain X� ¼ fxj/ðxÞ 6 0g, where / is a higher dimensional level set
function [20,23]. In order to extend this quantity to third order accuracy, Aslam proposed the following steps in [1]. First,
the normal vector field n ¼ r/

jr/j is calculated in the whole domain with the standard central finite difference formulas. Then
directional derivatives Q n ¼ n � rQ and Q nn ¼ n � rQn are successively calculated with standard central finite difference
Fig. 11. Time-dependent drag and lift coefficients, for example, Section 6.2. (Top Left) Drag, Re ¼ 100; (Top right) Drag, Re ¼ 200; (Bottom left) Lift,
Re ¼ 100; (Bottom right) Lift, Re ¼ 200.

Table 4
Drag and lift coefficients, for example, Section 6.2.

DragðCDÞ LiftðCLÞ

Re ¼ 100 Re ¼ 200 Re ¼ 100 Re ¼ 200

Belov et al. [3] – 1.19 ± 0.042 – ±0.64
Braza et al. [4] 1.364 ± 0.015 1.40 ± 0.05 ±0.25 ±0.75
Liu et al. [15] 1.350 ± 0.012 1.31 ± 0.049 ±0.339 ±0.69
Calhoun [5] 1.330 ± 0.014 1.172 ± 0.058 ±0.298 ±0.668
Present 1.368 ± 0.016 1.373 ± 0.050 ±0.360 ±0.724

Fig. 12. Streamlines, for example, Section 6.3 at steady state with l ¼ 0:01.
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formulas. Since Q is not defined in the whole domain, Q n and Qnn at a grid node are properly defined only when Q and Q n are
defined at all of its neighboring nodes. To help in these definitions, numerical Heaviside functions are defined as:
Fig. 13.

Table 5
Converg
Section

Grid

83

163

323

643

1283
H0
ij ¼

0 if /ij 6 0;
1 otherwise;

�

H1
ij ¼

0 if H0
i�1;j ¼ 0 and H0

i;j�1 ¼ 0;
1 otherwise;

�

and
H2
ij ¼

0 if H1
i�1;j ¼ 0 and H1

i;j�1 ¼ 0;
1 otherwise:

�

Vorticity density of fluid flow around the rotating ellipse, for example, Section 6.4 at t=1.5, 3.5, 6.5, and 10.5, going from left to right, top to bottom.

ence of the velocity in the x- and y-directions in the case of the Navier–Stokes example in three spatial dimensions on irregular domain, for example,
7.1.

L1 norm Order L1 norm Order

1.51E�2 4.92E�3

5.03E�3 1.58 6.20E�4 2.99

2.49E�3 1.02 2.60E�4 1.25

7.23E�4 1.78 8.32E�5 1.65

3.77E�4 0.94 2.41E�5 1.77
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Note that Q ;Qn and Q nn are properly defined only when H0 ¼ 0;H1 ¼ 0, and H2 ¼ 0, respectively. For the second step, the
value of Q nn is extended to the whole domain along the normal vector field, via:
Table 6
Converg
7.1.

Grid

83

163

323

643

1283

−12

−11

−10

−9

−8

−7

−6

Fig. 14.

−12

−11

−10

−9

−8

−7

−6

−5

Fig.
@Q nn

@s
þ H2 � ðn � rQnnÞ ¼ 0: ð10Þ
Third, using the extrapolated value of Q nn in the above step, Qn is linearly extrapolated to the whole domain along the normal
vector field using:
@Q n

@s
þ H1 � ðn � rQ n � Q nnÞ ¼ 0: ð11Þ
ence of the velocity in the z-direction in the case of the Navier–Stokes example in three spatial dimensions on irregular domain, for example, Section

L1 norm Order L1 norm Order

2.41E�2 7.55E�3

6.02E�3 2.00 7.52E�4 3.33

2.10E�3 1.52 3.82E�4 0.98

1.01E�3 1.06 1.23E�4 1.64

4.90E�4 1.04 3.58E�5 1.78

3 3.5 4 4.5 5 5.5 6 6.5 7

data
best fit
first order
second order

3 3.5 4 4.5 5 5.5 6 6.5 7
−16

−15

−14

−13

−12

−11

−10

−9

−8

−7
data
best fit
first order
second order

Log–log plots of the L1 (left) and L1 (right) norms of the x and y components of velocity as a function of grid resolution, for example, Section 7.1.

3 3.5 4 4.5 5 5.5 6 6.5 7

data
best fit
first order
second order

3 3.5 4 4.5 5 5.5 6 6.5 7
−15

−14

−13

−12

−11

−10

−9

−8

−7
data
best fit
first order
second order

15. Log–log plots of the L1 (left) and L1 (right) norms of the z component of velocity as a function of grid resolution, for example, Section 7.1.



Finally, using the extrapolated value of Qn in the above step, Q is quadratically extrapolated to the whole domain along the
normal vector field:
@Q
@s
þ H0 � ðn � rQ � QnÞ ¼ 0: ð12Þ
In [18], Min and Gibou introduced efficient discretizations for the above equations, and found that in order to obtain third
order accuracy for the extrapolated quantity Q near the interface, it is enough to apply a TVD RK-2 discretization for the time
derivative, a first order upwind discretization for the space derivatives in Eqs. (10) and (11), and a second order ENO discret-
ization for the space derivatives in (12).
6. Examples for the Navier–Stokes equations

6.1. Convergence analysis for an exact solution

Consider the Navier–Stokes equations on an irregular domain X� ¼ fðx; yÞj sinðxÞ sinðyÞP :2 and 0 6 x; y 6 pgwith initial
velocity field Uðx; y;0Þ ¼ ðsin x cos y;� cos x sin yÞ. The boundary condition of the velocity field on the wall is Ubc � n ¼ 0. Fig. 6
depicts the irregular domain and the streamlines of the flow. We take the appropriate forcing term for the exact solution to
be Uðx; y; tÞ ¼ ðcos t sin x cos y;� cos t cos x sin yÞ. We take a final time of p=3. Table 3 shows the second-order accuracy in the
L1 and L1 norms.
6.2. Flow past a cylinder

We now consider the simulation of a fluid flow past a cylinder, as first proposed by Dennis and Chang [8], and we show
that our method is capable of reproducing the steady and unsteady regimes of the flows. The case where the Reynolds num-
ber is relatively small ðRe 	 40Þ corresponds to a steady regime whereas larger Reynolds numbers ðRe 	 200Þ correspond to
Fig. 16. Steady axisymmetric regime: particle path trace in three spatial dimensions for the Re ¼ 150 case, for example, Section 7.2.



unsteady regimes where vortex shedding can be observed. The transition between those two regimes occurs somewhere
between Re ¼ 40 and Re ¼ 50, as demonstrated experimentally by Coutanceau and Bouard [7].

Consider a domain X ¼ ½0;32� � ½0;16� and a cylinder with radius r ¼ :5 and center located at (8,8). We impose Dirichlet
boundary conditions of u ¼ U1 ¼ 1 on the left, top and bottom walls, an outflux boundary condition at the right wall and the
no-slip boundary condition at the cylinder’s boundary. In our numerical experiments we define the viscosity coefficient
l ¼ 2rU1=Re and vary the Reynolds number Re. Fig. 7 depicts the streamlines and vorticity contours for Re ¼ 40. In partic-
ular, the symmetry of the results are in agreement with a steady regime for low Reynolds numbers. Fig. 8 depicts the stream-
lines and vorticity contours for Re ¼ 50. This experiment illustrates a vertical asymmetry, indicating that the transition to an
unstable regime occurs between Re ¼ 40 and Re ¼ 50. Figs. 9 and 10 illustrate an unstable regime for Re ¼ 100 and Re ¼ 200,
−1

−1−1

−1

−0.5
−0.5

−0.5

−0.5
−0.5

−0.5



respectively. In particular, they exhibit the broken symmetry of the vorticity contours and the standard vortex shedding. The
total force acting on the cylinder is the integration of the force, and given as
F ¼
Z

C
ð�pþ 2lDÞn;
where D is the symmetric stress tensor and n is the outward normal to the cylinder. The drag and the lift coefficients
are given by the x- and y-components of the F, respectively, properly scaled by rU1. Fig. 11 depicts the sinusoidal
oscillations of the drag and lift coefficients on the cylinder. The coefficients are in agreement with previously reported re-
sults, as shown in Table 4. The integral for computing the force is approximated in this work by the geometric integration
of [17].
6.3. Flow past arbitrary shaped solid objects

Consider a domain X ¼ ½�1;1�2 with multiple solid obstacles, as done in Ito et al. [11]. We set a no-slip boundary condi-
tion on the solids’ boundaries, an inflow boundary condition of ðu;vÞ ¼ ð1;0Þ at x ¼ �1 and an outflow boundary condition at
x ¼ 1. The top and bottom walls have a boundary condition of ðu;vÞ ¼ ð1;0Þ. Fig. 12 depicts the streamlines and the vorticity
contours at steady state.
6.4. Ellipse rotating in a closed box

Consider a domain X ¼ ½�1;1�2 and an ellipsoid with dimensions radiusx ¼ :5; radiusy ¼ :2, centered at (.2,0) at tn ¼ 0, and
rotating around the pivot point (0,0). We impose no-slip boundary conditions all the domain walls and the solid boundary.
We define viscosity l ¼ :0001 and angular velocity x ¼ :5 in the clockwise. Fig. 13 depicts vorticity density of the fluid flow
around the moving object.









Fig. 25. Curl of velocity and streamlines around the y-axis, viewed down the positive y-axis (left) and negative y-axis (right), for example, Section 7.3.

Fig. 26. Curl of velocity and streamlines around the z-axis, at slice z ¼ 0 (top left), z ¼ �:1 (top right), z ¼ �:2 (bottom left), and z ¼ �:3 (bottom right), for
example, Section 7.3.
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8. Conclusion

We have presented a novel and efficient discretization of the Navier–Stokes equations on irregular domains. The irregular
domains can be of arbitrary shape and do not have to be approximated by domain rasterization. In particular, we have pre-
sented a novel discretization of the projection step that is straightforward to implement and leads to a symmetric positive
definite linear system that can be inverted efficiently with standard methods. We demonstrated the second-order accuracy
in two spatial dimensions and first-order accuracy in three spatial dimensions in the L1 and L1 norms and we showed that
this method can reproduce accurate fluid flow motions on irregular domains with examples in both two and three spatial
dimensions.
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